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Abstract
Identifying where, when, and how many animals live and die over time is principal 
to understanding factors that influence population dynamics. Capture–recapture–
recovery (CRR) models are widely used to estimate animal survival and, in many 
cases, quantify specific causes of mortality (e.g., harvest, predation, starvation). 
However, the restrictive CRR framework can inhibit the consideration and inclusion 
of some types of recovery data. We developed an extension to the CRR framework 
to allow for the incorporation of recoveries from indeterminate temporal or spatial 
origin. This model jointly estimates cause-specific mortality and survival probabil-
ities across multiple spatial and temporal scales, while accounting for differences 
in mortality-specific reporting and recovery rates. We fitted the model to data on a 
group of juvenile steelhead trout (Oncorhynchus mykiss) marked with passive inte-
grated transponder tags in the Columbia River basin, USA. Following tagging and 
release, fish were detected alive at up to six downstream locations and/or recovered 
dead on one of nine bird colonies during seaward migration. We estimated that, in 
aggregate, avian predators consumed 31% of juvenile steelhead during outmigration 
to the ocean (95% CRI: [27, 36]). Colony-specific predation rates ranged from < 1 to 
14% among river reaches, with avian predation accounting for > 95% of all steelhead 
mortality within some reaches. This integrated modelling approach provides a flex-
ible framework to integrate multiple recapture and recovery data sources, providing 
a more holistic understanding of animal life history, including direct comparisons of 
cause-specific mortality factors and the cumulative impact of multiple mortality fac-
tors across time or space.
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1 Introduction

Capture-recapture (CR) models have become a ubiquitous tool in the estimation of sur-
vival in populations with imperfect detection rates (Pollock et al. 1990; Barker 1997; 
Lebreton et al. 2009; McCrea and Morgan 2014; Bohning et al. 2017). More recent 
approaches have been developed that integrate both live animal recapture events and 
dead animal recovery events, referred to as capture–recapture–recovery (CRR) models 
(Burnham 1993; Barker 1997; Schaub and Pradel 2004; Colchero and Clark 2012). 
The use of recovery data can provide supplementary life history information and con-
sequently facilitate greater precision and reduced bias in estimates of survival com-
pared with the use of recapture data alone (Burnham 1993; Barker 1997; Catchpole 
et al. 1998; Schaub and Pradel 2004; Colchero and Clark 2012; Hostetter et al. 2018).

While CRR methods do well in providing estimates of survival probabilities, consid-
erations of the various causes of mortality may be principal to developing a full under-
standing of the factors that influence survival (Schaub and Pradel 2004; Kendall et al. 
2006; Michelot et al. 2015). However, dead-recoveries generally do not directly reflect 
the true or full impact of the mortality source. For instance, waterfowl band recoveries 
require that a (1) banded bird is shot, (2) recovered, and (3) reported (Burnham 1993). 
CRR methods to identify, separate, and quantify specific causes of mortality (e.g., har-
vest, predation, starvation) are of great interest and an area of active research (Schaub 
and Pradel 2004; McCrea and Morgan 2014; Hostetter et  al. 2018). Furthermore, 
CRR models typically assume that the location or time of recovery (relative to recap-
ture opportunities) are known and accurately reported. This assumption can inhibit the 
incorporation of many types of dead recoveries into a CRR framework (Catchpole et al. 
2001; Hostetter et al. 2018), especially in complex, multi-predator systems.

CR studies are routinely used in the Columbia River, USA, to evaluate survival 
of multiple Endangered Species Act (ESA) listed salmonid species (Oncorhynchus 
spp.). Survival studies often focus on the seaward migration of tagged juveniles 
through a series of hydroelectric dams referred to as the Federal Columbia River 
Power System (FCRPS; Kareiva et  al. 2000) using fish marked with passive inte-
grated transponder (PIT) tags. In addition to recapture events, recoveries of PIT tags 
on piscivorous waterbird nesting colonies have been used to independently estimate 
mortality of tagged fish due to avian predation. To estimate true impacts of preda-
tion, studies often integrate auxiliary data to adjust raw recovery counts for fish that 
were consumed but not deposited on a bird colony, as well as imperfect recoveries 
of tags on bird colonies (i.e., reporting and recovery rates; Collis et al. 2001; Evans 
et al. 2012; Hostetter et al. 2015a). Predation models based on recovery data alone, 
however, are unable to incorporate uncertainty regarding where and when fish suc-
cumb to predation because birds commute long distances to forage on live tagged 
fish and because tag recovery efforts are not performed in real-time, but rather 
months after the fish were consumed (Evans et al. 2012; Osterback et al. 2013).

Herein, we develop a framework to quantify multiple mortality sources and 
survival by integrating live recapture data with mortality-specific recoveries, 
where the true location of mortality is only partially known. This method allows 
for the simultaneous modelling of survival and mortality, including the explicit 
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identification of cause-specific mortality rates at different spatial- and temporal-
scales. We present a concise construction of the likelihood function used in the 
model, which we refer to as the Joint Mortality and Survival (JMS) model. We 
demonstrate the utility of the JMS model through the analysis of a PIT-tagged 
steelhead trout (Oncorhynchus mykiss) dataset from the Columbia River. We con-
clude with a discussion of the overall effectiveness of the JMS model and ways 
the model can be further developed and applied to other research.

2  Methods

We first present a general construction of the JMS model in which there are K sequen-
tial capture/recapture opportunities of animals in a population, denoted t0,… , tK−1 , fol-
lowed by a single event of recovery, encompassing the recovery of animals from all 
sources of mortality, denoted tK . We assume n0 animals are individually marked and 
released at t0 followed by K − 1 opportunities for the attempted recapture of any previ-
ously marked animals and where an additional n1,… , nK−1 unmarked animals may also 
be newly captured, marked, and released. In the inter-event period between each tk and 
tk+1 , k = 0,… ,K − 1 , animals are assumed to be exposed to up to H mutually exclusive 
mortality hazard categories, H − 1 from which they can be recovered, and a singular 
“other hazard” category encompassing all other mortality causes from which recoveries 
were not available. All recoveries of animals, dead from one of the H − 1 recoverable 
hazards, are assumed to take place at tK , some time/place after the last recapture event. 
Auxiliary information, specific to the probability of recovery from each of these haz-
ards, is requisite in identifying the cause specific, inter-event hazard rates.

2.1  Model parameterization

In general, CRR models rely on three categories of parameters describing the prob-
abilities of survival/mortality, recapture, and recovery to construct likelihood state-
ments about the fate of a marked animal. To fully parameterize this model, we first let

� to be a K-sized vector where �k represents the probability an animal alive at tk−1 
survives until tk and
� be a K × H matrix where element �k,h represents the probability an animal alive 
at tk−1 dies prior to tk due to mortality cause h for h = 1,… ,H − 1 . For �k,H , the 
probability an animal alive at tk−1 dies prior to tk due to “other hazards”, we avoid 
overparameterization by recognizing 𝛩k,H = 1 − 𝜙k − 𝛴h<H𝛩k,h . Note that, since 
tK does not involve live recapture, survival beyond the last recapture opportu-
nity, �K , is necessarily confounded with death from “other hazards” after the last 
recapture opportunity, �K,H.

We then also let

p be a (K − 1)-length vector where element pk , k = 1,… ,K − 1, represents the 
probability that an animal alive at tk is recaptured, and
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� be a H-length vector where element �h represents the probability of recovery for 
an animal which dies due to mortality cause h at any time between t0 and tK . We 
assume �h ∈ (0, 1] for h = 1, 2,… ,H − 1 and �H = 0 , indicating the inability to 
recover animals from unspecified mortality causes. Here, we additionally assume 
� to be independent of the inter-event opportunity period in which an animal dies.

2.2  Summary statistics

In addition to n, the vector of newly captured, marked, and released animals defined 
above, we organize the statistics necessary to identify the survival/mortality and 
recapture probabilities with two matrices: � , tabulating recaptures; and � , tabulat-
ing recoveries. Specifically, we define

� to be a K-sized upper-triangular square matrix where element Mk,k′ represents 
the number of animals released at tk−1 (both previously and newly marked) which 
are first recaptured again at opportunity tk′ , where k′ ≥ k , and
� to be a K × H matrix where element Dk,h represents the total number of ani-
mals released at opportunity tk−1 that are never recaptured again but later recov-
ered from mortality cause h , for h = 1,… ,H − 1 , and element Dk,H represents 
the number of animals released at tk−1 that are never subsequently recaptured nor 
recovered. Note that, in contrast to the first H − 1 columns of D, which corre-
spond directly with the first H − 1 columns of � , the H th column of � represents 
an accumulation of unrecovered animals from all mortality sources as well as ani-
mals who survive to tK.

Finally, we define {�} to be a set of varying size encompassing all supplemental 
data used to inform recovery probabilities. In constructing the likelihood, we refer to 
the probability function relating {�} and � as the “recovery information function” to 
be discussed in detail later.

2.3  Likelihood calculation

We define several notational parameters and statistics to help simplify the construc-
tion of the model. With these transformations we can express the likelihood function 
with five distinct products. The first product accounts for estimation of recapture 
probabilities using data from the recapture opportunities. The next three products 
address survival prior to an animal’s last recapture and the continued survival, 
unsuccessful recapture, and eventual death that can be inferred from an animal’s 
recovery or lack thereof. Lastly, we discuss the product dealing with auxiliary data 
addressing the identification of recovery parameters.

2.3.1  Recapture data

Noting the recapture of live animals and unsuccessful recapture of animals known to 
be alive provides a means to directly estimate the recapture probability throughout the 
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system. The recapture of animals known to be alive at each recapture opportunity is 
assumed to be a binomial process with the elements of � representing the probability of 
successful recapture with the elements of � denoting the number of successful recap-
tures. For notational ease, we define

� = 1 − � to be a K-length vector representing the probabilities of unsuccessful 
recaptures and
V to be a K-sized upper-triangular square matrix tabulating known failed recap-
tures. That is, Vk,k′ represents the number the animals released at tk−1 that were 
not recaptured at tk′ but were encountered at one or more subsequent recapture 
opportunities (i.e. Vk,k� = 𝛴j>k�Mk,j ). Additional information about unsuccessful 
recapture can be inferred by recovery data which will be addressed shortly.

The contributions to the likelihood provided by M and V can be expressed

2.3.2  Recovery data

The JMS model is constructed to describe complex systems with imperfect recap-
ture rates, imperfect rates of recovery, and where recoveries are of uncertain spatial/
temporal origin. The entries of � identify where an animal was last recaptured and 
then recovered, for columns h = 1,… ,H − 1, or never recovered for h = H . The 
information of � does not directly identify within which inter-event opportunity the 
individual died nor, in the case of Dk,H∀k , is the cause of death always known. Con-
sequently, likelihood probabilities associated with entries of �-accounting for the full 
array of possible reaches survived, missed recaptures, and probable recovery- are 
most efficiently expressed with matrices. To enable these calculations, we first let

such that the entry at �k,k+i represents the probability that an individual released at 
tk−1 remains alive but is unsuccessfully recaptured for the next i consecutive oppor-
tunities. The product, �� , is then be employed to describe the probabilities of indi-
viduals surviving subsequent their last recapture until death. Applying recovery 
probabilities, we can define

��diag(�) , to be a K × H matrix where {��diag(�)}k,h represents the probability 
an individual last recaptured at tk−1 was never recaptured again but recovered from 
mortality cause h , for h < H , and

Lrecapture ∝

K−1�
k=1

p

k∑
i=1

M
i,k

k
q

k∑
i=1

Vi,k

k
.

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 �1q1 �1q1�2q2 …
K−1∏
k=1

�kqk

0 1 �2q2 …
K−1∏
k=2

�kqk

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 … 1

⎤⎥⎥⎥⎥⎥⎥⎦
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��(1 − �) to be a K-length vector where {��(1 − �)}k represents the probability 
an animal last recaptured at tk−1 was never recaptured again nor ever recovered.

The contribution of � to the likelihood can then be expressed in three probability 
statements. We first define

Lsurvival to last recapture ∝
∏k−1

k=1
�
�k

i=1
(ni−1−�hDk,h)

k
 to account for the number of inter-

event periods each animal was known to survive. We then define
Ldead recoveries ∝

∏K

k=1

∏H−1

h=1
{��diag(�)}

Dk,h

k,h
 and

Lunrecovered animals ∝
∏K

k=1
{��(1 − �)}

Dk,H

k
 to account for the possible life paths an 

animal may have taken following its last recapture.

2.3.3  Recovery information function

The last portion of the likelihood equation encompasses the identification of the 
all the parameters describing recovery. Unless perfect recovery is assumed (i.e. 
𝜆h = 1∀h < H ), supplemental information is necessary to separately identify � and � . 
In practice, we assume each �h to be a function of one or more additional parameters. 
These additional parameters are assumed identifiable through recovery information 
functions, gh(�h, �h) , specific to each mortality source, where each �h is a set of addi-
tional recovery data specific to mortality cause h (e.g., use of test tags, reward tags; Pol-
lock et al. 2001; Hostetter et al. 2015a). We assume that, for each h = 1,… ,H − 1 , �h 
is sufficient for the estimation of �h . Each �h may summarize an array of information 
sources such as the probability of reporting of harvest by hunters or anglers, the prob-
ability of recovering a dead animal, the probability of recovering tags from fish on a 
bird colony, etc. The contribution of this information to the likelihood can be expressed 
generically as

2.3.4  Likelihood

With these transformations we can express the likelihood function as follows:

Lrecovery information =

H−1∏
h=1

gh(�h, �h).

L ∝

K−1�
k=1

p
∑k

i=1
Mi,k

k
q
∑k

i=1
Vi,k

k

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
recaptures

×

K−1�
k=1

�
∑k

i=1
(ni−1−

∑
h Dk,h)

k

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
survival to last recapture

×

K�
k=1

H−1�
h=1

{��diag(�)}
Dk,h

k,h

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
dead recoveries

×

K�
k=1

{��(1 − �)}
Dk,H

k

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
unrecovered animals

×

H−1�
h=1

gh(Uh, �h)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
recovery information

.
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2.3.5  Reparameterization as a single multinomial process

In a sequentially defined system, whereby simplexes of survival/mortality rates are 
uniquely defined for each inter-event period, each successive period’s estimates are 
necessarily dependent on the cumulative estimate of survival through the preceding 
inter-event periods. Developing estimates of inter-event mortality rates can therefore 
become increasingly intractable as more recapture events are considered. This cor-
relation among parameters creates interdependent prior distributions and complex 
likelihood geometries from which it is difficult to simulate draws using Monte Carlo 
algorithms (Gelman 2004; Papaspiliopoulos et al. 2007).

We therefore suggest a re-parameterization allowing the system to be treated as a 
single multinomial process. We define a “life-path simplex”, 

� = diag

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

1

�1

�1�2

⋮

�1�2 …�K−1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠
� , to be a K × H matrix, where �k,h represents the 

probability an animal released at t0 survives until tk−1 then succumbs to hazard h 
prior to tk . The elements of Ω then sum to one and represent all relevant outcomes 
possible for an animal released at t0 . Treating the system in this manner mitigates 
many of the concerns outlined above, most pragmatic of which, is the computational 
efficiency gained. Furthermore, this choice of re-parameterization facilitates several 
additional benefits including the simplifying of covariate introduction and the deri-
vation of relationships among the mortality parameters. For instance, this parame-
terization readily allows for the modelling of serial correlation among weekly 
cohorts as demonstrated in the example dataset to follow.

3  Example application

3.1  Capture, recapture, and recovery data

To illustrate implementation of the JMS model, we analysed survival and cause-
specific mortality of PIT-tagged juvenile steelhead trout outmigrating through 
the FCRPS to the Pacific Ocean. Over the course of 10  weeks in the spring 
(April–June) of 2014, 62 690 steelhead trout were captured at Lower Granite 
Dam (GRA), PIT-tagged (12-mm × 2-mm; 134.2 kHz), and released into the tail-
race of the dam, 695 river kilometers {rkm} from the ocean. Following release at 
GRA, migrating steelhead encountered six potential live PIT-tag recapture loca-
tions downstream: (1) Little Goose Dam (LGO, rkm 635),(2) Lower Monumental 
Dam (LMO, rkm 589), (3) McNary Dam (MCN, rkm 470), (4) John Day Dam 
(JDA, rkm 348), (5) Bonneville Dam (BON rkm 234) and (6) a vessel towed pair-
trawl net detection system in Columbia River Estuary (EST, rkm 75; Fig. 1). No 
unmarked fish were marked at subsequent recaptures (i.e. nk = 0∀k > 0 ). In addi-
tion to recapture sites, some steelhead were consumed alive by avian predators 
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and then recovered dead on one of nine bird colonies located downstream of 
GRA (Fig.  1). Researchers used hand-held PIT-tag antennas to recover tags on 
bird colonies following the breeding season (August–November; see Hostetter 
et al. 2015a for details). Waterbird colonies scanned for steelhead tags were iden-
tified by species and island location and included (1) Caspian terns (Hydroprogne 
caspia, hereafter CATE) nesting on Crescent Island (CSI, rkm 510), (2) Central 
Blalock Island (CBI, rkm 440), and (3) East Sand Island (ESI, rkm 8), (4) Cali-
fornia and ring-billed gulls (Larus californicus and Larus delewarensis, hereafter 
LAXX) nesting on Island 20 (IS20, rkm 549) (5) CSI, (6) CBI, and (7) Miller 
Rocks Island (MRI, rkm 331), and double-crested cormorants (Phalacrocorax 
auritus, hereafter DCCO) nesting at (8) Foundation Island (FDI, rkm 518) and 
(9) ESI. As noted above, survival through the system and death beyond EST are 
necessarily confounded. We therefore refer to the life history represented by �

K,H
 

as “non-depredated survivors past EST”.

Fig. 1  Schematic of release, recapture, and recovery sites used in the study, along with the number of 
tagged steelhead detected at each site. Fish were released from Lower Granite Dam (GRA) and subject 
to live recapture events at downstream antennas or dead recovery events at bird colonies. Arrows depict 
colonies capable of consuming fish above and below live recapture sites
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The flexible framework of the JMS model allowed for specialization to address sev-
eral challenges and ecological hypotheses associated with the case study. Rates of sur-
vival, predation, recapture, and recovery were all assumed to vary over time, with rates 
from periods closer in time assumed to be more alike than those temporally further 
apart. To account for this variation, we grouped fish releases into weekly cohorts, defin-
ing recapture and recovery matrices accordingly ( �

w
 and �w ), and developed week-

specific survival, recapture, and recovery rates ( �w , �w , and �w ) with an assumption of 
serial correlation among weekly rates. Annual rates were calculated as an average of 
weekly rates weighted by weekly release counts.

3.2  JMS adjustment for autocorrelation

Avian predation rates and survival rates were both assumed to vary weekly (Evans 
et al. 2014; Hostetter et al. 2015a) and Gaussian processes were employed to model this 
time-dependent variation. Noting vec(�w) as a simplex allows us to address autocorre-
lation with a logistic regression analogue. Using non-depredated survivors past EST as 
the reference level, we assume

where �k,h,w ∼ Normal(0, �2
k,h
)∀k, h,w (excluding the reference level k = K, h = H).

Weekly differences in dam operations and river conditions (e.g., flows, spill percent-
age, etc.) were assumed to influence recapture probabilities of tagged fish across time 
at each dam (Sandford and Smith 2002; Hostetter et al. 2015b). Weekly variations in 
recapture rates were also modelled as an auto-regressive process,

where �k,w ∼ Normal(0, �2
k
)∀k,w.

Using an amalgam of previous research, we can reduce the number of parameters 
to be estimated by recognizing the limited foraging range of the colonies under consid-
eration (see Fig. 1; Evans et al. 2016). That is, cause-specific mortality rates for each 
colony were forced to equal zero (0) in river reaches in which we could assume they did 
not forage. Thus, we let

log

(
�k,h,w+1

�K,H,w+1

)
= log

(
�k,h,w

�K,H,w

)
+ �k,h,w

logit(pk,w+1) = logit(pk,w) + �k,w

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 �1,10
0 0 0 0 0 0 0 0 0 �2,10
�3,1 �3,2 0 �3,4 �3,5 �3,6 0 �3,8 0 �3,10
0 �4,2 0 �4,4 �4,5 �4,6 �4,7 0 0 �4,10
0 0 0 0 0 0 �5,7 0 0 �5,10
0 0 0 0 0 0 0 0 0 �6,10
0 0 �7,3 0 0 0 0 0 �7,9 �7,10

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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where river reaches and mortality causes are delineated as noted above and mor-
tality cause h = H = 10 representing “other hazards” that were not under explicit 
consideration.

3.3  Recovery function form and data

The proportion of recovered steelhead tags does not account for all PIT-tagged fish 
consumed by a bird colony due to two probabilistic factors: (1) not all tags ingested 
by birds are subsequently deposited on the birds’ nesting colony (i.e., deposition 
probability is < 1.0; Hostetter et al. 2015a; Teuscher et al. 2015) and (2) not all tags 
deposited by birds on their nesting colony are subsequently found by researchers 
after the breeding season (i.e., detection probability < 1.0; Ryan et al. 2003; Evans 
et al. 2012). Furthermore, tags deposited later in the season are assumed to be more 
likely to be detected and thus inter-weekly variation must also be reflected in the 
construction of recovery rates and therefore into the construction of the recovery 
information function, gh(�h,w, �h,w) . The two processes comprising tag recovery 
are assumed to be statistically independent such that we can let �h,w = �h ∗ �h(w) . 
While the detection probability, �h(w) , is written as a function of week, the deposi-
tion rate, �h , is assumed constant across a breeding season (Hostetter et al. 2015a).

Predator-specific (CATE, DCCO, LAXX) deposition probabilities were esti-
mated from an independent controlled feeding experiment (Hostetter et al. 2015a). 
Herein, we assume predator-specific deposition probabilities for each colony h , 
�h ∼ Beta(ah, bh) where ah and bh are the Beta parameters suggested by Hostet-
ter et  al. (2015a) for the species of predator associated with colony h . Thus, �h is 
assumed identifiable from this information alone and is treated as an informed prior 
in the fitting of the model.

Estimates of detection probabilities were derived using repeated intentional sow-
ing of a known number of PIT-tags on each colony that were then later recovered 
following the breeding season (Evans et al. 2012). We let

Un
h,w

 be the number of intentionally sown tags on colony h in week w and
Ux

h,w
 be the number of Un

h,w
 subsequently recovered following the breeding/migra-

tion season.

The variation in the detection probability across time is modelled using logistic 
regression (Evans et al. 2012; Hostetter et al. 2015a). That is, we assume

where

For two of the colonies, researchers were unable to access the colonies prior to 
the breeding season to intentionally sow tags. We therefore incorporated informa-
tion from other migration years to inform the estimate of �h(w) . The colonies where 

Ux
h,w

∼ Binomial
(
Un

h,w
,�h(w)

)

�h(w) = logit−1(�h + �hw).
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these considerations were required were the LAXX colony on Island 20 (for which 
we incorporated information collected from the same colony in the years 2013, 
2015, and 2016) and the CATE colony on Blalock Islands (for which we incorpo-
rated information collected from the same colony in the years 2008, 2009, 2011, 
2013, 2015, and 2016). For these colonies, we assume the parameters defining the 
logistic relationship outlined above vary among years according to a multivariate-
normal distribution. That is, we assume

Therefore, the recovery information function for this iteration of the JMS (omitting 
the requisite prior distributions) was

There is substantial mortality on steelhead from sources with which recover-
ies were not possible (e.g., predatory fish, dam passage, disease, and other causes; 
Ward et al. 1995; Muir et al. 2001; Dietrich et al. 2011). All these other hazards are 
encompassed by mortality cause H and we therefore set �H = 0 (i.e. these animals 
cannot be recovered).

Non- or weakly-informative priors were employed for all parameters and hyper-
parameters, as suggested by Gelman et  al. (2013). The initial week’s recapture 
parameters, �1 , and life path simplexes, �1 , exist in closed parameter spaces and 
were thus assigned uniform priors (i.e. pk,1 ∼ Uniform(0, 1) and 
[vec(�1)] ∼ Dirichlet(1) ). The two variance parameters associated with the Gauss-
ian processes, �

i
 and �

j,h
 , were assigned half-normal prior distributions with variance 

25. Such distributions were selected primarily for the efficiency they provide in the 
MCMC process. The hyperparameters �h and �h were both assigned weakly-inform-
ative normal priors (mean of 0, variance of 25). The hyper–hyper parameters ��h

 and 
��h

 were assigned similar weakly-informative normal priors (mean of 0, variance of 
25). The parameters of �h were assigned half-normal prior distributions with vari-
ance equal to 5.

Simulated samples from the posterior distribution were derived using the soft-
ware Stan (Stan Development Team 2016), accessed through R version 3.1.2 (R 
Development Core Team 2014), using the rstan package (version 2.17.3; Stan Devel-
opment Team 2016). We ran four parallel Hamiltonian Monte Carlo (HMC) simula-
tions (Betancourt and Mark 2015). Each chain contained 2000 adaptation iterations, 
followed by 2000 posterior iterations. Chain convergence was visually evaluated and 
verified using the Gelman-Rubin statistic (Gelman et  al. 2013). Chains were only 
considered valid given Gelman-Rubin statistics for all parameters valued less than 

[
�
y

h

�
y

h

]
∼ Normal

([
��h

��h

]
,�h

)
.

H−1∏
h=1

gh(Uh, �h) ∝

H−1∏
h=1

�
ah−1

h
(1 − �h)

bh−1

∗

H−1∏
h=1

∏
w

�h(w)
Ux

h,w [1 − �h(w)]
Un

h,w
−Ux

h,w .
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1.01 and zero (0) divergent transitions reported. Posterior predictive checks were 
used to assure model fit with respect to site-specific annual recapture counts and 
site-specific annual recovery counts (Gelman et al. 2013). Bayesian p values were all 
deemed to be of little concern (p values ∈ (0.1, 0.9)). We present estimate results as 
posterior medians along with 95% highest (posterior) density intervals (95% CRI).

4  Results

Well informed recovery probabilities were crucial to the identification of colony 
specific mortality rates and varied greatly across colonies. For instance, the prob-
ability of recovering a tag from a week 1 released fish consumed by LAXX nesting 
at CSI was estimated to be 0.08 (95% CRI: [0.05, 0.12]; Table  1). This suggests 
that for every week 1 released tag recovered from the CSI LAXX colony, approxi-
mately 11 other fish were consumed, but the tags were destroyed, lost, or otherwise 
rendered unrecoverable (see Hostetter et al. 2015a for additional details). Compara-
tively, the probability of recovering a tag from a week 10 released fish consumed 
by CATE nesting at CSI was estimated to be 0.52 (95% CRI: [0.29, 0.71]; Table 1). 
Thus, every recovery represented the consumption of approximately two fish by the 
CSI CATE colony.

We estimated high (> 94%) annual survival rates of steelhead released from 
GRA in the first two downstream river reaches (GRA-LGO, LGO-LMO; Table 2), 
reaches that were outside of the foraging range of the colonies under considera-
tion in this study (Fig.  1). Survival in the third reach (LMO-MCN), where steel-
head first encountered predation from colonies included in the study, was estimated 
to be �̂�4 = 0.77 (95% CRI: [0.73, 0.80]). We estimated aggregate predation by all 
birds ( 𝛴h<H �̂�3,h ) in this reach to be 0.14 (95% CRI: [0.11, 0.18]). The greatest col-
ony-specific rate of predation in the LMO-MCN reach was due to CATE nesting on 
CSI, where an estimated 0.06 (95% CRI: [0.04, 0.10]) of steelhead alive at LMO 
were consumed by terns from this individual colony. The simultaneous estimation 
of cause-specific mortality and survival also provided a direct measure of the pro-
portion of total mortality (compliment of survival) due to avian predation, which 
we estimated at 59.4% in this reach (95% CRI: [44, 82]; Fig. 2). This suggests that 
aggregate avian predation may have been this reach’s greatest source of steelhead 
mortality.

Despite the presence of multiple avian predators downstream of MCN (Fig. 1), 
estimated annual survival rates in both the MCN-JDA (0.94 (95% CRI: [0.89, 0.97]) 
and JDA-BON (0.92 (95% CRI: [0.87, 0.95]) reaches were high (Table  2). How-
ever, as with the LMO-MCN reach, the aggregate impact of avian predators in these 
river reaches was likely the dominate mortality factor, with aggregate avian preda-
tion accounting for an estimated 91% (95% CRI: [43, 100]) and 96% (95% CRI: 
[53, 100]) of all steelhead mortality sources in these two reaches, respectively. Of 
the individual colonies foraging in these reaches, predation rates were the highest 
by LAXX colonies, with gulls nesting on CBI and MRI consuming an estimated 
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0.02 (95% CRI: [0.01, 0.03]) and 0.07 (95% CRI: [0.04, 0.09]) of available steelhead 
within the MCN-JDA and JDA-BON reaches, respectively (Table 2).

Downstream of EST we estimated an aggregate avian predation rate in the estu-
ary of 0.24 (95% CRI: [0.16, 0.33]), with predation probabilities of 0.14 (95% 
CRI: [0.10, 0.20]) for ESI CATE and 0.09 (95% CRI: [0.06, 0.15]) for ESI DCCO 
(Table 2). The recovery of tags from bird colonies on ESI additionally allowed for 
the estimation of survival through the BON-EST reach, an estimate otherwise uni-
dentifiable from recapture data alone. We estimated cumulative steelhead survival 
from GRA to EST to be 0.45 (95% CRI: [0.36, 0.59]). It follows, that the rate of 
non-depredated survivors past EST was estimated to have been 0.34 (95% CRI: 
[0.24, 0.47]). This also represents the estimated upper limit of steelhead survival 
from GRA to the Pacific Ocean. The cumulative steelhead predation rate from 
release at GRA by all avian predators (CATE, DCCO, LAXX) was estimated to be 
0.31 (95% CRI: [0.27, 0.36]). It follows that we estimate, for every three steelhead 
released at GRA in 2014, approximately at most one made it to the ocean, one was 
depredated by the colonies in this study, and one succumbed to some other unidenti-
fied cause. Collectively, these results indicate that, in aggregate, the nine avian colo-
nies included in our study were likely one of greatest sources of steelhead mortality 
during outmigration to the Pacific Ocean in 2014.

5  Discussion

Information provided by recovery data can significantly increase precision and 
reduce bias in survival probabilities in CR models (Burnham 1993; Barker 1997; 
Catchpole et al. 1998). Also, CRR models, and the JMS model specifically, allow 
for survival estimation to the final recapture opportunity when there are subsequent 
recoveries opportunities. This was particularly evident in our example dataset, as 
there were substantially more tags recovered downstream of the final recapture site 

Fig. 2  Estimated total mortality (dark grey) and total avian predation mortality (light grey) of tagged 
steelhead released at Lower Granite Dam during 2014. Error bars represent 95% creditable interval. 
An estimate of total mortality downstream of estuary trawl is not available (NA). Avian predation only 
includes colonies listed in Table 1
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than were seen at the final recapture site (2387 recovered tags compared with 891 
recaptured tags). The consideration of all available data (recapture and recovery) 
relevant to the life-cycle of an animal can also be beneficial, regardless of research-
ers’ driving motivation, whether that be survival or cause-specific mortality rates. 
Further, the simultaneous or joint estimation of survival and mortality (in this case 
avian predation) provided a more holistic interpretation of results.

This example dataset demonstrates the numerous benefits of using the JMS model 
as an alternative to the independent survival and predation models currently in use. 
The JMS model allows for direct comparison of individual and aggregate mortality 
factors at various spatial and temporal scales. We note that previous avian predation 
studies in the Columbia River basin have estimated predation separate from survival 
using all fish detected (i.e., “released”) at the nearest upstream dam (Evans et  al. 
2012; Hostetter et al. 2015a). While not incorporated into our example dataset, these 
newly detected fish can readily be included into the JMS model, resulting in larger 
sample sizes for both survival and mortality estimation.

While the benefits of the JMS are numerous, the added assumptions underly-
ing the model must be carefully considered. Specifically, the JMS model assumes 
mortality rates are independent of the probability of recapture or recovery. This is 
a potential source of contention in the case study as recovery probabilities may be 
dependent on the physical condition of the fish, with poor condition fish (injured or 
sick fish) potentially more susceptible to predation by birds than good condition fish 
(Hostetter et  al. 2012). Fish of different sizes (e.g., fork-lengths) and fish of poor 
condition may also have different recapture probabilities during migration (Zabel 
et al. 2005; Hostetter et al. 2015b). Thus, a disproportionate number of detections 
(recaptures and recoveries) may be made by fish with lower survival probabilities 
and higher predation rates. It may be difficult to prove such a relationship though, 
and additional research into the independence of these parameters could be valuable.

In conclusion, we have presented a comprehensive method for jointly estimat-
ing survival and cause-specific mortality rates based on recapture and recovery 
data with indeterminate time or place of death. This method allows the use of dead 
recoveries to increase knowledge about the fate of animals otherwise unknown from 
encounter histories alone. We are additionally able to model survival and multiple 
causes of mortality within one all-encompassing model, which leads to a more cohe-
sive understanding of the factors influencing population dynamics with greater accu-
racy and precision.
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